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Accurate modeling of electron-hole recombination in organic light-emitting diodes �OLEDs� is essential for
developing a complete description of their functioning. Traditionally, the recombination rate is described by the
Langevin formula, with a proportionality factor equal to the sum of the electron and hole mobilities. In the
disordered organic semiconductors used in OLEDs these mobilities have been shown to depend strongly on the
carrier densities and on the electric field. Moreover, the energetic disorder leads to percolating pathways for the
electron and hole currents, which may or may not be correlated. To answer the question whether the Langevin
formula is still valid under such circumstances we perform Monte Carlo simulations of the recombination rate
for Gaussian energetic disorder. We vary the disorder energy, the temperature, the densities, and mobility ratio
of electrons and holes, the electric field, and the type of correlation between the electron and hole energies. We
find that at zero electric field the Langevin formula is surprisingly well obeyed, provided that a change in the
charge-carrier mobilities due to the presence of charge carriers of the opposite type is taken into account.
Deviations from the Langevin formula at finite electric field are small at the field scale relevant for OLED
modeling.
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I. INTRODUCTION

Organic light-emitting diodes �OLEDs� are very promis-
ing efficient light sources in display and lighting applica-
tions. Commercial OLED pixelated displays as well as large-
area OLED white-light sources are presently entering the
market. An essential process in OLEDs is the recombination
of an electron and a hole, leading to the emission of a pho-
ton. In the emitting organic semiconductor the electrons and
holes move toward each other under the influence of an ex-
ternal electric field and their mutual attractive Coulomb in-
teraction. The rate of recombination, R, is defined as the total
number of electron-hole recombination events per second
and per unit volume. Already in 1903, Langevin1,2 gave an
expression for this recombination rate,

RLan =
e��e + �h�

�r�0
nenh � �Lannenh, �1�

where e is the unit charge, ne and nh are the electron and hole
densities, and �e and �h are the electron and hole mobilities,
respectively; �0 is the vacuum permeability, �r is the relative
dielectric constant of the semiconductor, and �Lan is the
Langevin bimolecular recombination rate factor.

One of the underlying assumptions in the derivation of
this expression is that the mean-free path of the charge car-
riers � is much smaller than the thermal capture radius rc
=e2 / �4��r�0kBT�, where T is the temperature and kB is the
Boltzmann’s constant. For the disordered organic semicon-
ductors used in OLEDs charge transport takes place by hop-
ping between molecules or conjugated segments of a
�-conjugated polymer, which we will call “sites,” and the
mean-free path is on the order of the intersite distance a

�1–2 nm. At room temperature and with a relative dielec-
tric constant �r�3, typical for organic semiconductors, the
thermal capture radius is rc�18.5 nm. Hence, the assump-
tion ��rc is valid.

Another assumption made in deriving Eq. �1� is that
charge-carrier transport occurs homogeneously throughout
the semiconductor. This is, however, in general not the case.
Due to the percolative nature of charge transport in energeti-
cally disordered organic semiconductors, the current distri-
bution has a highly inhomogeneous filamentary structure,
with differences in local current densities that can vary over
many orders of magnitude.3–7 This raises the question
whether Eq. �1� is still valid under such conditions. Another
issue that plays a role in this context is the possible correla-
tion between the on-site energies of holes and electrons. In
the case of correlation between on-site electron and hole en-
ergies, the current filaments of the electrons and holes over-
lap. One would then intuitively expect a larger recombina-
tion rate than in the case of uncorrelated or even
anticorrelated energies. Correlation between electron and
hole energies occurs when the energetic disorder is caused by
fluctuations in the local polarizability of the semiconductor
or by differences in the length of conjugated segments. An-
ticorrelation between electron and hole energies occurs when
the disorder is caused by fluctuations in the local electrostatic
potential. In the present paper we will study both extremes of
perfect correlation and perfect anticorrelation. In reality, the
situation will be intermediate.

A further complication arises when the recombination oc-
curs in the presence of an external electric field because the
electron and hole mobilities have an electric-field depen-
dence. Moreover, it has become clear in recent years that
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under typical operating conditions of OLEDs the dependence
of the mobilities on the charge-carrier densities is even more
important than their dependence on the electric field.8,9 This
raises the question whether it is possible to use the Langevin
expression Eq. �1� by including these dependencies in the
mobilities occurring in the expression.

Giving an analytical description of recombination under
such complicating circumstances is impossible and one
therefore has to resort to numerical methods. Various aspects
of recombination in disordered semiconductors have been
studied in the 1990s by using Monte Carlo �MC�
simulations.10–12 The on-site energies in these simulations are
randomly drawn from a Gaussian distribution. Using Miller-
Abrahams hopping rates,13 Albrecht and Bässler10,11 have
calculated the MC recombination cross section and from that
the bimolecular recombination rate factor �. They find that
the ratio between � and �Lan from Eq. �1� is almost indepen-
dent of temperature but increases with electric field. Gart-
stein et al.12 have calculated the ratio between the MC and
the Langevin recombination cross section. At room tempera-
ture, they find a slight decrease followed by an increase in
this ratio with increasing electric field for Miller-Abrahams
hopping rates and a decrease for polaronic hopping rates.14,15

These authors find a weak dependence of this ratio on tem-
perature at low electric field, developing into a considerable
temperature dependence at high electric field. Both these MC
studies consider the recombination of only two carriers,
where one of the carriers is fixed at a particular site in a
simulation box and the other carrier is released at a random
site located upfield in a plane orthogonal to the electric field.
Therefore, these simulations correspond to the case of van-
ishing electron and hole densities.

More involved MC simulations of recombination were
very recently performed by Groves and Greenham.16 In these
simulations both electrons and holes are allowed to hop with
polaronic hopping rates, in the presence of an external elec-
tric field, and the density of electrons and holes is varied.
Like in the previous MC simulations10–12 the on-site energies
are drawn from a Gaussian distribution. Perfect correlation
between hole and electron energies at a site is assumed. After
recombination of an electron-hole pair, the electron and hole
are reintroduced into the simulation box at random sites,
guaranteeing constant prescribed charge-carrier densities.
The ratio R /RLan is studied, where the charge-carrier mobili-
ties in the Langevin expression Eq. �1� are determined by
separate MC simulations of only one type of charge carrier at
the same density as in the MC simulations with recombina-
tion. Considerable deviations �up to about 40%� from the
Langevin expression are found.16 Effects of anisotropy and
blends of electron- and hole-transporting materials are also
considered in that work but these will not be considered in
the present work, which will focus on isotropic and homo-
geneous recombination.

Accurate modeling of OLEDs requires an adequate de-
scription of the recombination rate in such devices. Obvi-
ously, it would be attractive to have available an efficient, yet
sufficiently precise way of including recombination in a de-
vice model, instead of needing to calculate the recombination
rate for every specific situation with time-consuming MC
simulations. One of the objectives of the present work is to

make a first step into this direction. We will investigate the
recombination process with MC simulations for an isotropic
and homogeneous organic semiconductor, varying the disor-
der energy of the Gaussian disorder, the temperature, the
densities of electrons and holes, the mobility ratio of elec-
trons and holes, the electric field, and the type of correlation
between electron and hole energies. As in the MC studies
discussed above10–12,16 we will study the validity of the
Langevin expression Eq. �1�. Since Miller-Abrahams hop-
ping rates have been used in successful modeling studies by
us of hole-only devices,9 we will also use these hopping rates
in our study. We assume that the bound state of an electron
and hole residing on the same site has a sufficiently low
energy so that spontaneous unbinding of such state into an
electron-hole pair cannot occur. When this energy is not low
enough, it is known that deviations from the Langevin
expression occur.17

We remark that it has been argued by several authors18–20

that the energetic disorder in organic semiconductors should
be spatially correlated. One of the situations for which this
would occur is when the energetic disorder is caused by ran-
dom dipolar fields. Such correlation leads to a strongly en-
hanced electric-field dependence of the mobility.18–20 We
have recently performed modeling studies of current-voltage
characteristics of hole-only devices of a derivative of PPV
�Ref. 21� and of a polyfluorene-based copolymer,22 both with
spatially uncorrelated and correlated Gaussian disorder.
These models are commonly called the Gaussian disorder
model �GDM� and the correlated disorder model, respec-
tively. These studies have led to the conclusion that the in-
tersite distance as found from a fit assuming uncorrelated
disorder is more realistic than that found from a fit assuming
correlated disorder. Therefore, we will consider in this work
spatially uncorrelated disorder.

Like Groves and Greenham,16 we find rather large devia-
tions from the Langevin expression if the electron and hole
mobilities in the Langevin expression are taken to be those
of the electrons and holes separately at their respective den-
sities. On the other hand, we find that the Langevin expres-
sion describes our MC recombination rates surprisingly well
if the electron and hole mobilities are taken to be those in
exactly the double-carrier situation studied. In the case of an
externally applied electric field we find deviations from the
Langevin expression that can be attributed to the electric-
field dependence of the mobilities. However, these deviations
are small for the electric-field strengths relevant for OLEDs.
All these findings can open the way to efficient and accurate
modeling of double-carrier devices.

The paper is built up as follows. In the next section we
discuss our Monte Carlo procedure. In Sec. III we present
various results of our Monte Carlo studies. In Sec. IV we
discuss our results and present our conclusions.

II. MONTE CARLO METHOD

We model the localized electronic states in the organic
semiconductor by a three-dimensional cubic lattice with lat-
tice constant a. Periodic boundary conditions are taken in all
three Cartesian directions. We assume that the hopping of
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charge carriers from one localized state to another is a ther-
mally assisted tunneling process with coupling to a bath of
acoustical phonons. The hopping rate from site i to site j is
then of the Miller-Abrahams form13

Wij,q = �0,q exp�− 2�Rij −
Ej,q − Ei,q

kBT
�, for Ej,q 	 Ei,q,

�2a�

Wij,q = �0,q exp�− 2�Rij�, for Ej,q 
 Ei,q �2b�

with q the charge of the hopping charge carrier �q=−e for
electrons and q=e for holes�, �0,q the intrinsic attempt-to-
jump frequency of carrier q, � the inverse localization length
of the localized wave functions, and Rij the distance between
sites i and j. The energy Ei,q of charge q at site i contains a
random contribution, a contribution qFRij,x due to an electric
field F applied in the x direction, and a contribution due to
the interaction with all the other charges in the system. We
take �=10 /a and allow hopping to the 26 nearest neighbors,
which is a good approximation for derivatives of PPV at
room temperature.9

The random contribution to the energy Ei,q is drawn from
a Gaussian density of states �DOS�,

g�E� =
1

	2��a3
e−E2/2�2

. �3�

The disorder energy � is the width of the Gaussian DOS and
is, in this work, taken equal for electrons and holes. As ex-
plained in Sec. I, we distinguish two cases for the correlation
between on-site electron and hole energies: �1� perfect cor-
relation and �2� perfect anticorrelation; see Fig. 1. In case �1�
the random part of the hole on-site energy is taken equal to
that of the electron on-site energy while in case �2� the ran-
dom part of the hole on-site energy is taken opposite to that
of the electron on-site energy. Therefore, it is energetically
advantageous for an electron and a hole to reside on the same
site in case �1� while in case �2� this is disadvantageous.

The energy Ei,q also contains the Coulomb interaction en-
ergy Ui with all other charges. For practical reasons we use a
finite-range variant of the Coulomb potential,

fc�Rij� = 
 1

4��r�0
� 1

Rij
−

1

Rc
� , 0 
 Rij � Rc

0, Rij  Rc
 �4�

with Rc as cutoff radius. We will always use a value of Rc
that is large enough to have no influence on the final results.
The interaction energy Ui is taken as

Ui = �
j�i

qiqjfc�Rij� , �5�

where qi and qj are the charges of the interacting carriers at
sites i and j �qj =0 if there is no charge at site j�. We assume
that due to strong on-site Coulomb repulsion the presence of
two equal charges at a site is not allowed.

When an electron and a hole are on neighboring sites, the
hopping of the hole to the electron or vice versa is always
assumed to be downward in energy, such that the hopping
rate will be given by Eq. �2�. After such a process, the elec-
tron and hole are removed from the system and reintroduced
randomly on empty sites according to an equilibrium distri-
bution determined by the random contribution to the site
energies �excluding the contribution from the electric field
and the Coulomb interaction with other charges�. Reintro-
duction of the electron and hole guarantees that the electron
and hole densities are kept fixed. We note that our method of
reintroduction is slightly different from that of Groves and
Greenham, who choose random empty sites for reintroducing
the electron and hole and then take new random energies of
these sites according to the equilibrium density of occupied
states.16 Both methods of reintroduction are of course artifi-
cial. In a real OLED, electrons and holes approach each other
from opposite electrodes. One can argue what method of
reintroduction gives the most accurate description of the real
situation. An alternative would be reintroduction of the elec-
tron and hole at completely randomly chosen sites. If the
electrons and holes are energetically relaxed before they re-
combine, which should be the case for sufficiently low den-
sities of electrons and holes, the precise way of reintroduc-
tion should become irrelevant. We will come back to this
issue in the next section and show that our main conclusion
is not affected by the choice of the reintroduction procedure.

Our simulations proceed as follows. First, a cubic simu-
lation box is filled with a prescribed number of electrons and
an equal number of holes. After that, hops of electrons and
holes are chosen with weights determined by the hopping
rates Eq. �2�. A hopping time is chosen from an exponential
distribution with an inverse decay time equal to the sum of
all possible hopping rates. After a sufficiently long equilibra-
tion time, counting of the number of recombination events
starts. This proceeds until a sufficiently accurate result for
the recombination rate is obtained.

We use two different methods of calculating carrier mo-
bilities. In the first method, which corresponds to that of
Groves and Greenham,16 we fill our simulation box with ex-
actly the same number of charge carriers of one type as we
have in the double-carrier simulation. We then apply a small
electric field �or apply the same field as in the double-carrier
simulation� and obtain the current by counting the number of

� � � � � � � � � � 	 � 	 � � 
 � � � � � � � � � � 	

� �  �

� �  �

� 	 � � � �
� �  �

� �  �

FIG. 1. �Color online� The different types of correlation between
on-site electron and hole energies considered in this work, reflected
in the energies for the lowest-unoccupied molecular orbital and
highest-unoccupied molecular orbital. Left/right: correlated/
anticorrelated electron and hole energies.
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hops in the field direction. From the current, we straightfor-
wardly obtain the mobilities �uni of each carrier type in this
“unipolar” system. We remark that the results obtained in
this way are equivalent to those of Zhou et al.23 In the sec-
ond method, we take our double-carrier simulation, apply a
small electric field �or apply the same field as in the double-
carrier simulation� and calculate the current contribution of
each carrier type separately. Accordingly, we obtain �bi of
each carrier type in this “bipolar” system. We have sketched
these two methods of calculating the mobilities in Fig. 2.
Using these differently calculated mobilities in the Langevin
expression Eq. �1� we obtain recombination rates that we
will call RLan,uni and RLan,bi, respectively.

III. RESULTS

In our simulations we have used the following param-
eters: a=1.6 nm, �0,h=3.5�1020 s−1, and �r=3 �typical for
organic semiconductors�. The values for a and �0,h are those
found in Ref. 9 from a fit of the GDM to measured current-
voltage characteristics for a PPV derivative
�poly�2-methoxy-5-�3� ,7�-dimethyloctyloxy�-p-phenylene
vinylene�, OC1C10-PPV�. The simulation box has a size of
100�100�100 sites. Averages are performed over several
�typically 20� different configurations of the Gaussian disor-
der, from which an error estimate is obtained. The following
values for the cutoff radius of the finite-range Coulomb po-
tential of Eq. �4� were found to be sufficient: Rc=19.2, 32,
and 64 nm for the electron and hole densities ne=nh=10−3,
10−4, and 10−5 carriers per site, respectively.

In Fig. 3 we investigate the effect of disorder on the ratio
R /RLan of the zero-field �F=0� MC recombination rate R and
the Langevin recombination rate RLan, given by Eq. �1�. In
Figs. 3�a�, 3�c�, and 3�e� we display R /RLan as a function of
disorder energy � for equal electron and hole hopping fre-
quencies ��0,e=�0,h�, at room temperature �T=300 K�, using
three different electron and hole densities in a range typical
for OLEDs: �a� ne=nh=10−3, �c� 10−4, and �e� 10−5 carriers
per site. In Figs. 3�b�, 3�d�, and 3�f� the corresponding uni-
polar and bipolar mobilities are displayed. Results are shown

for correlated as well as anticorrelated disorder. In Fig. 4 we
investigate the effect of taking different mobilities of elec-
trons and holes. In Figs. 4�a�, 4�c�, and 4�e� we display
R /RLan as a function of the ratio �0,e /�0,h between the elec-
tron and hole hopping frequencies in Eq. �2�, at room tem-
perature, using three different disorder energies: �a� �=50,
�c� 100, and �e� 150 meV. The density of electrons and holes
is ne=nh=10−4 carriers per site. In Figs. 4�b�, 4�d�, and 4�f�
the corresponding mobilities are displayed.

With the unipolar mobilities used in the Langevin formula
Eq. �1� �RLan,uni� substantial deviations are found from the
simulated recombination rates. As expected �see Sec. I�, the
recombination rate for correlated electron and hole energies
is larger than for anticorrelated electron and hole energies.
Surprisingly, however, the deviations from the simulated re-
combination rates almost completely disappear when the bi-
polar mobilities are used in the Langevin formula �RLan,bi�.
Only for the largest density, ne=nh=10−3 carriers per site,
some deviations are observed. This is not unexpected since
the average distance between electrons and holes is then
smaller than the thermal capture radius. Also surprisingly,
R /RLan,bi�1 both for correlated and anticorrelated disorders,
when the corresponding bipolar mobilities are inserted in the
Langevin formula. We note that the bipolar mobilities �bi,corr
and �bi,anticorr are different for the cases of correlated and
anticorrelated electron and hole energies whereas the unipo-
lar mobilities �uni are the same. A very important conclusion
that we draw from these results is that the Langevin formula
is still valid when the appropriate mobilities are used.

FIG. 2. �Color online� The two methods of calculating mobili-
ties in this work. In the unipolar method we consider the presence
of only one type of carrier and calculate its mobility. In the bipolar
method we consider the presence of both types of carriers �open
blue circles: electrons and solid red circles: holes� and calculate
both their mobilities. In the bipolar method the mobilities of one
carrier type are smaller than in the unipolar method because of the
additional Coulomb interactions with the other carrier type. The
figure indicates the typical situation in which almost all carriers are
trapped in energetically deep-lying states in the Gaussian density of
states, with only a few carriers that are mobile and contribute to the
conduction.
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FIG. 3. �Color online� ��a�, �c�, and �e��: Zero-field recombina-
tion rate R relative to the Langevin recombination rate RLan as a
function of disorder energy �, at temperature T=300 K and three
different electron and hole densities ne and nh. Red circles/blue
triangles: correlated/anticorrelated electron and hole energies. Solid/
dashed lines: Langevin recombination rate calculated with bipolar/
unipolar mobilities. ��b�, �d�, and �f��: Corresponding unipolar
�black squares� and bipolar mobilities.
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This conclusion is further supported by Fig. 5, in which
we investigate the temperature dependence of R /RLan and the
corresponding mobilities for three different disorder ener-
gies: ��a� and �b�� �=50, ��c� and �d�� 100, and ��e� and �f��
150 meV. The density of electrons and holes is ne=nh
=10−4 carriers per site and correlated electron and hole en-
ergies are taken. Again, with unipolar mobilities substantial
differences are found between the Langevin and the simu-
lated recombination rates whereas with bipolar mobilities
these differences disappear completely.

To check the influence of the specific way of reintroduc-
ing the electron and hole after a recombination event, we
performed room-temperature simulations with random rein-
troduction of electrons and holes, for ne=nh=10−4 carriers
per site, varying disorder strengths, and correlated electron
and hole energies; see Fig. 6. As expected, we find larger
bipolar mobilities �by about a factor 8 for �=150 meV� but
if we use these mobilities in the Langevin expression Eq. �1�,
R /Rlan becomes indistinguishable from the values found with
reintroduction according to an equilibrium distribution �the
latter are the same as in Fig. 3�c��. Hence, the specific rein-
troduction mechanism does not affect the above conclusion.

Finally, we investigate the electric-field dependence of the
recombination rate. Figure 7 shows the ratio R /RLan,bi and
the corresponding bipolar mobilities as a function of the
electric field F, at room temperature, for three different elec-
tron and hole densities and three different disorder energies:
��a� and �b�� �=50, ��c� and �d�� 100, and ��e� and �f�� 150
meV. Correlated electron and hole energies are taken. We

now observe that some deviations between the Langevin and
the simulated recombination rates occur. In the limit of van-
ishing carrier densities such deviations were already ob-
served in the MC simulations of Albrecht and Bässler10,11

and Gartstein et al.,12 who suggested that these can be attrib-
uted to “field-induced mobility anisotropy.”12 Moreover, the
electric-field dependence of the charge-carrier mobility leads
in the original Langevin problem to a gradient in the charge-
carrier density around a recombination site, leading to a non-
zero diffusion contribution that has to be taken into
account.24 The deviations from the Langevin recombination
rate that we observe increase with increasing disorder energy
�. This is in agreement with the increase in the electric-field
dependence of the mobility with increasing �.9 Interestingly,
we observe that the electric-field dependence of R /RLan,bi has
only a weak dependence on the charge-carrier density, which
is in agreement with the observation that the electric-field
dependence can be included in the mobility by a density-
independent prefactor.9 We note that in Fig. 7 the electric
field was applied along an axis of the cubic lattice �the �100�
direction�. We observed that different dependencies at high
electric field �F�� / �ea�� are found when applying the field
along the �111� direction, due to the increasing anisotropy in
the mobility tensor with electric field. However, the relevant
region for OLED modeling is F
� / �ea�. In this region, the
deviations from the Langevin prediction remain quite
modest.

IV. DISCUSSION AND CONCLUSIONS

We have performed Monte Carlo simulations of electron-
hole recombination in a homogeneous and isotropic disor-
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FIG. 4. �Color online� ��a�, �c�, and �e��: Zero-field recombina-
tion rate R relative to the Langevin recombination rate RLan as a
function of relative hopping frequency ratio �0,e /�0,h of electrons
and holes, at temperature T=300 K, electron and hole densities
ne=nh=10−4 /a3, and three different disorder energies. ��b�, �d�, and
�f��: Corresponding electron and hole mobilities. Symbols and lines
as in Fig. 3.
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FIG. 5. �Color online� ��a�, �c�, and �e��: Zero-field recombina-
tion rate R relative to the Langevin recombination rate RLan, calcu-
lated for correlated electron and hole energies, as a function of
temperature T, at electron and hole densities ne=nh=10−4 /a3 and
three different disorder energies. Red circles/black squares: Lange-
vin recombination rate calculated with bipolar/unipolar mobilities.
��b�, �d�, and �f��: Corresponding mobilities.
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dered organic semiconductor, including all aspects that are
relevant for this process: disorder, finite densities of electrons
and holes, Coulomb interactions, an applied electric field,
different mobilities of electron and holes, and different types
of correlation between on-site electron and hole energies. We
come to the important conclusion that at zero applied electric
field the Langevin expression for the recombination rate is
very accurate if the appropriate charge-carrier mobilities are
used, i.e., the charge-carrier mobilities as calculated in ex-
actly the bipolar system studied. These mobilities are differ-
ent from the corresponding mobilities as calculated in a uni-
polar system with only one charge-carrier type present. In
particular, the unipolar mobilities are higher than the bipolar
mobilities. The reason for this is that in the bipolar system
the additional Coulomb interactions with the oppositely
charged carriers lead to an increased effective disorder, re-
sulting in a lower mobility; see Fig. 2. In the bipolar system,
the mobilities for the case of correlated electron and hole
energies are larger than for the case of anticorrelated electron
and hole energies. We attribute this to the larger effect of
state filling for the correlated case as compared to the anti-
correlated case since electrons and holes compete for low-
energy sites. Because state-filling effect increase the mobil-
ity, this leads to a higher mobility for the correlated case.
This higher mobility then leads to a higher recombination
rate. Apparently, this higher recombination rate can be fully
accounted for by the Langevin expression. This means that
the filamentary structure of the electron and hole current as
mentioned in Sec. I does not lead to a breakdown of the
Langevin expression, provided that the appropriate mobili-
ties are used.

In order to better understand this result, we considered the
distribution of the frequency of recombination events at each
site as a function of the random part of the on-site energy of
the site, at a disorder energy �=100 meV, room tempera-
ture, electron and hole densities ne=nh=10−4 carriers per
site, zero electric field, and equal electron and hole mobili-
ties; see Fig. 8. It turns out that in the case of correlated
electron and hole energies this distribution has two compo-
nents; see Fig. 8�a�. The first component peaks at a low en-
ergy and is approximately proportional to the density of oc-

cupied states �DOOS� of electrons and holes. The second,
roughly equally large, component peaks at higher energies.
Analysis of our simulations shows that a typical recombina-
tion process occurs by a mobile carrier approaching an im-
mobile carrier of opposite charge. The last step involves ei-
ther the hopping of the mobile carrier to the site of the
immobile carrier or the hopping of the immobile carrier to
the site of the mobile carrier. Since for both possibilities this
last step is downward in energy they have equal weights. The
first possibility leads to the first component in the distribu-
tion and the second possibility to the second component. As
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FIG. 7. �Color online� ��a�, �c�, and �e��: Recombination rate R
relative to the Langevin recombination rate RLan,bi, calculated with
bipolar mobilities and correlated electron and hole energies, as a
function of electric field F, at temperature T=300 K, at three dif-
ferent electron and hole densities, and three different disorder ener-
gies. ��b�, �d�, and �f��: Corresponding bipolar mobilities.
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FIG. 6. �Color online� �a�: Zero-field recombination rate R relative to the Langevin recombination rate RLan as a function of disorder
strength �, at temperature T=300 K, electron and hole densities ne=nh=10−4 /a3, and correlated electron and hole energies, calculated for
different reintroduction procedures of electrons and holes. Red circles/green triangles: equilibrium/random reintroduction. Solid/dashed lines:
Langevin recombination rate calculated with bipolar/unipolar mobilities. �b�: Corresponding unipolar �black squares� and bipolar mobilities.
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compared to the Gaussian DOS, the second component is
shifted downward in energy because the mobile charge ap-
proaches the immobile charge preferentially via a low-energy
site.

In the case of anticorrelated electron and hole energies the
distribution has three components; see Fig. 8�b�. The third
component is the mirror image of the first component of the
correlated case and arises because for anticorrelated electron
and hole energies a high-energy site for an electron is at the
same time a low-energy site for a hole. The sum of the first
and third component is now approximately equally large as
the second, middle, component. The middle component now
becomes symmetric and is closer to the Gaussian DOS than
in the correlated case.

The consequence of the above analysis is that the location
of sites at which recombination events preferentially take
place does not coincide with the location of the current fila-
ments of electrons or holes. Rather, these locations coincide
with, or are neighbors of, energetically low-lying sites for
electrons or holes. Hence, the conclusion from this analysis
is that, whereas current filaments play a primary role in de-
termining the mobility of electrons and holes, they do not
play a primary role in determining the location at which
recombination events take place.

We remark that in the present work we have taken equal
electron and hole densities and equal disorder energies for
electrons and holes, and we have only studied the extremes
of correlated and anticorrelated on-site electron and hole en-
ergies. We expect, however, that our conclusion about the
validity of the Langevin expression, with the appropriate mo-
bilities inserted, will also hold in the general case of arbitrary
electron and hole densities, different disorder energies for
electrons and holes, and an arbitrary correlation between
electron and hole energies.

This important conclusion opens the way to simplified
and accurate modeling of the recombination rate in OLEDs.
In order to realize such modeling, the effect of the reduction
in the mobility caused by the enhanced effective disorder due
to the random Coulomb field should be quantified. This
could possibly be done along the lines set out by Arkhipov et
al.,25 who calculated the increase in the effective disorder

energy due to Coulomb interactions with dopant ions. In or-
der to make a first step into this direction, we calculated for
a disorder energy �=150 meV, temperature T=300 K, elec-
tron and hole densities ne=nh=10−3 carriers per site, zero
electric field, and equal electron and hole mobilities the dis-
tribution of the energies Ei,q in our simulations, including all
Coulomb interactions. We find that this is a Gaussian distri-
bution with a width �eff that is slightly larger than �. For the
unipolar case we find �eff,uni=161�2 meV whereas for the
bipolar case we find �eff,bi,corr=171�1 meV for correlated
and �eff,bi,anticorr=173�1 meV for anticorrelated electron
and hole energies, respectively. For lower densities ne=nh
=10−4 carriers per site and otherwise the same parameters the
corresponding values are �eff,uni=152�1 meV, �eff,bi,corr
=154�1 meV, and �eff,bi,anticorr=154�1 meV. As ex-
pected, we have �eff,uni
�eff,bi,corr��eff,bi,anticorr. We find that
with these values and with the parametrization of the GDM
mobility as given in Ref. 9 the differences observed in the
mobilities in Fig. 3�b� and 3�d� can be quite well explained.
In order to properly account for state-filling effects one
should then for �bi,corr take twice the carrier density taken for
�bi,anticorr. We remark that despite the fact that the additional
energetic disorder caused by the random Coulomb field is
smaller for lower carrier densities, the effect on the mobili-
ties is not necessarily smaller since at lower carrier densities
the dependence of the mobility on the disorder energy is
larger.9,26 As a matter of fact, the effect observed in Figs.
3�b�, 3�d�, and 3�f� does not strongly depend on the density.
Of course, at extremely low densities �not reached yet for
ne=nh=10−5 in Fig. 3�f��, the effect of the Coulomb interac-
tions on the charge-carrier mobilities should disappear. We
intend to perform a more complete analysis of these issues in
future work. One of the additional issues that should be ana-
lyzed is the fact that the contribution to the energetic disorder
from the random Coulomb field will be spatially correlated,
which means that the total effective energetic disorder cannot
be treated purely within the GDM.

In the presence of an applied electric field, our simula-
tions show deviations from the Langevin recombination rate,
which can be attributed to field-induced mobility
anisotropy12 and to a nonzero diffusion contribution caused
by the electric-field dependence of the mobilities. These de-
viations show only a weak dependence on the electron and
hole densities. In the range of electric fields relevant for
OLEDs the deviations are quite modest.

Our conclusions are expected to have important conse-
quences for calculations of the width of the recombination
zone in OLEDs. The inclusion of the carrier-density depen-
dence in the electron and hole mobilities leads to a narrow-
ing of the calculated recombination zone in OLEDs since the
mobility of charge carriers entering the recombination zone
decreases due to the reduced carrier density caused by re-
combination. Moreover, “behind” the recombination zone
the mobility of charge carriers of one type decreases further
due to their now very strongly reduced density.27 According
to the present work, an additional reduction in the carrier
mobilities in and behind the recombination zone should oc-
cur by the increased effective disorder due to the random
Coulomb field of the carriers of the opposite sign. This
should lead to a further reduction in the calculated width of
the recombination zone.
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FIG. 8. Bars: distribution of the frequency of recombination
events at sites as a function of the random part of the energy of the
sites, at disorder energy �=100 meV, temperature T=300 K, zero
field, and densities ne=nh=10−4 /a3 for �a� correlated and �b� anti-
correlated electron and hole energies. Lines: DOOS of electrons and
holes and Gaussian DOS. One disorder configuration was used and
the total number of recombination events was 67133 and 66817 for
the correlated and anticorrelated case, respectively.

ELECTRON-HOLE RECOMBINATION IN DISORDERED… PHYSICAL REVIEW B 80, 235202 �2009�

235202-7



ACKNOWLEDGMENTS

This research was supported by NanoNed, a national
nanotechnology program coordinated by the Dutch Ministry

of Economic Affairs �J.J.M.v.d.H.� and by the Seventh
Framework Program of the European Community �Grant
Agreement No. 213708� �AEVIOM� �F.W.A.v.O., R.C., and
P.A.B.�. We acknowledge fruitful discussions with J. Cottaar.

*Author to whom correspondence should be addressed;
j.j.m.v.d.holst@tue.nl
1 M. P. Langevin, Ann. Chim. Phys. 28, 433 �1903�.
2 M. Pope and C. E. Swenberg, Electronic Processes in Organic

Crystals and Polymers �Oxford University Press, New York,
1999�.

3 Z. G. Yu, D. L. Smith, A. Saxena, R. L. Martin, and A. R.
Bishop, Phys. Rev. B 63, 085202 �2001�.

4 E. Tutiš, I. Batistić, and D. Berner, Phys. Rev. B 70, 161202�R�
�2004�.

5 K. D. Meisel, W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn,
P. A. Bobbert, P. W. M. Blom, D. M. de Leeuw, and M. A. J.
Michels, Phys. Status Solidi C 3, 267 �2006�.

6 J. J. Kwiatkowski, J. Nelson, H. Li, J. L. Bredas, W. Wenzel, and
C. Lennartz, Phys. Chem. Chem. Phys. 10, 1852 �2008�.

7 J. J. M. van der Holst, M. A. Uijttewaal, B. Ramachandhran,
R. Coehoorn, P. A. Bobbert, G. A. de Wijs, and R. A. de Groot,
Phys. Rev. B 79, 085203 �2009�.

8 C. Tanase, E. J. Meijer, P. W. M. Blom, and D. M. de Leeuw,
Phys. Rev. Lett. 91, 216601 �2003�.

9 W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert,
P. W. M. Blom, D. M. de Leeuw, and M. A. J. Michels, Phys.
Rev. Lett. 94, 206601 �2005�.

10 U. Albrecht and H. Bässler, Phys. Status Solidi B 191, 455
�1995�.

11 U. Albrecht and H. Bässler, Chem. Phys. 199, 207 �1995�.
12 Y. N. Gartstein, E. M. Conwell, and M. J. Rice, Chem. Phys.

Lett. 249, 451 �1996�.
13 A. Miller and E. Abrahams, Phys. Rev. 120, 745 �1960�.
14 H. Scher and S. Rackovsky, J. Chem. Phys. 81, 1994 �1984�.
15 H. Böttger and V. V. Bryksin, Phys. Status Solidi B 78, 9 �1976�.
16 C. Groves and N. C. Greenham, Phys. Rev. B 78, 155205

�2008�.
17 C. L. Braun, J. Chem. Phys. 80, 4157 �1984�.
18 Y. N. Gartstein and E. M. Conwell, Chem. Phys. Lett. 245, 351

�1995�.
19 D. H. Dunlap, P. E. Parris, and V. M. Kenkre, Phys. Rev. Lett.

77, 542 �1996�.
20 S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P. E. Parris, and

A. V. Vannikov, Phys. Rev. Lett. 81, 4472 �1998�.
21 M. Bouhassoune, S. L. M. van Mensfoort, P. A. Bobbert, and

R. Coehoorn, Org. Electron. 10, 437 �2009�.
22 R. J. de Vries, S. L. M. van Mensfoort, V. Shabro, S. I. E. Vulto,

R. A. J. Janssen, and R. Coehoorn, Appl. Phys. Lett. 94, 163307
�2009�.

23 J. Zhou, Y. C. Zhou, J. M. Zhao, C. Q. Wu, X. M. Ding, and
X. Y. Hou, Phys. Rev. B 75, 153201 �2007�.

24 M. Obarowska and J. Godlewski, Synth. Met. 109, 219 �2000�.
25 V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler,

Phys. Rev. B 71, 045214 �2005�.
26 R. Coehoorn, W. F. Pasveer, P. A. Bobbert, and M. A. J. Michels,

Phys. Rev. B 72, 155206 �2005�.
27 R. Coehoorn and S. L. M. van Mensfoort, Phys. Rev. B 80,

085302 �2009�.

VAN DER HOLST et al. PHYSICAL REVIEW B 80, 235202 �2009�

235202-8


